You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
zhishifufei_php/vendor/markbaker/complex/README.md

174 lines
5.4 KiB

1 year ago
PHPComplex
==========
---
10 months ago
PHP Class Library for working with Complex numbers
1 year ago
10 months ago
[![Build Status](https://github.com/MarkBaker/PHPComplex/workflows/main/badge.svg)](https://github.com/MarkBaker/PHPComplex/actions)
[![Total Downloads](https://img.shields.io/packagist/dt/markbaker/complex)](https://packagist.org/packages/markbaker/complex)
[![Latest Stable Version](https://img.shields.io/github/v/release/MarkBaker/PHPComplex)](https://packagist.org/packages/markbaker/complex)
[![License](https://img.shields.io/github/license/MarkBaker/PHPComplex)](https://packagist.org/packages/markbaker/complex)
1 year ago
[![Complex Numbers](https://imgs.xkcd.com/comics/complex_numbers_2x.png)](https://xkcd.com/2028/)
---
The library currently provides the following operations:
- addition
- subtraction
- multiplication
- division
- division by
- division into
together with functions for
- theta (polar theta angle)
- rho (polar distance/radius)
- conjugate
* negative
- inverse (1 / complex)
- cos (cosine)
- acos (inverse cosine)
- cosh (hyperbolic cosine)
- acosh (inverse hyperbolic cosine)
- sin (sine)
- asin (inverse sine)
- sinh (hyperbolic sine)
- asinh (inverse hyperbolic sine)
- sec (secant)
- asec (inverse secant)
- sech (hyperbolic secant)
- asech (inverse hyperbolic secant)
- csc (cosecant)
- acsc (inverse cosecant)
- csch (hyperbolic secant)
- acsch (inverse hyperbolic secant)
- tan (tangent)
- atan (inverse tangent)
- tanh (hyperbolic tangent)
- atanh (inverse hyperbolic tangent)
- cot (cotangent)
- acot (inverse cotangent)
- coth (hyperbolic cotangent)
- acoth (inverse hyperbolic cotangent)
- sqrt (square root)
- exp (exponential)
- ln (natural log)
- log10 (base-10 log)
- log2 (base-2 log)
- pow (raised to the power of a real number)
---
10 months ago
# Installation
```shell
composer require markbaker/complex:^1.0
```
# Important BC Note
If you've previously been using procedural calls to functions and operations using this library, then from version 3.0 you should use [MarkBaker/PHPComplexFunctions](https://github.com/MarkBaker/PHPComplexFunctions) instead (available on packagist as [markbaker/complex-functions](https://packagist.org/packages/markbaker/complex-functions)).
You'll need to replace `markbaker/complex`in your `composer.json` file with the new library, but otherwise there should be no difference in the namespacing, or in the way that you have called the Complex functions in the past, so no actual code changes are required.
```shell
composer require markbaker/complex-functions:^3.0
```
You should not reference this library (`markbaker/complex`) in your `composer.json`, composer wil take care of that for you.
1 year ago
# Usage
To create a new complex object, you can provide either the real, imaginary and suffix parts as individual values, or as an array of values passed passed to the constructor; or a string representing the value. e.g
10 months ago
```php
1 year ago
$real = 1.23;
$imaginary = -4.56;
$suffix = 'i';
$complexObject = new Complex\Complex($real, $imaginary, $suffix);
```
10 months ago
or as an array
```php
1 year ago
$real = 1.23;
$imaginary = -4.56;
$suffix = 'i';
$arguments = [$real, $imaginary, $suffix];
$complexObject = new Complex\Complex($arguments);
```
10 months ago
or as a string
```php
1 year ago
$complexString = '1.23-4.56i';
$complexObject = new Complex\Complex($complexString);
```
Complex objects are immutable: whenever you call a method or pass a complex value to a function that returns a complex value, a new Complex object will be returned, and the original will remain unchanged.
This also allows you to chain multiple methods as you would for a fluent interface (as long as they are methods that will return a Complex result).
## Performing Mathematical Operations
To perform mathematical operations with Complex values, you can call the appropriate method against a complex value, passing other values as arguments
10 months ago
```php
1 year ago
$complexString1 = '1.23-4.56i';
$complexString2 = '2.34+5.67i';
$complexObject = new Complex\Complex($complexString1);
echo $complexObject->add($complexString2);
```
10 months ago
or use the static Operation methods
```php
1 year ago
$complexString1 = '1.23-4.56i';
$complexString2 = '2.34+5.67i';
10 months ago
echo Complex\Operations::add($complexString1, $complexString2);
1 year ago
```
If you want to perform the same operation against multiple values (e.g. to add three or more complex numbers), then you can pass multiple arguments to any of the operations.
10 months ago
You can pass these arguments as Complex objects, or as an array, or string that will parse to a complex object.
1 year ago
## Using functions
When calling any of the available functions for a complex value, you can either call the relevant method for the Complex object
10 months ago
```php
1 year ago
$complexString = '1.23-4.56i';
$complexObject = new Complex\Complex($complexString);
echo $complexObject->sinh();
```
10 months ago
or use the static Functions methods
```php
1 year ago
$complexString = '1.23-4.56i';
10 months ago
echo Complex\Functions::sinh($complexString);
1 year ago
```
10 months ago
As with operations, you can pass these arguments as Complex objects, or as an array or string that will parse to a complex object.
1 year ago
10 months ago
In the case of the `pow()` function (the only implemented function that requires an additional argument) you need to pass both arguments when calling the function
```php
1 year ago
$complexString = '1.23-4.56i';
$complexObject = new Complex\Complex($complexString);
10 months ago
echo Complex\Functions::pow($complexObject, 2);
1 year ago
```
or pass the additional argument when calling the method
10 months ago
```php
1 year ago
$complexString = '1.23-4.56i';
$complexObject = new Complex\Complex($complexString);
echo $complexObject->pow(2);
```