|
|
|
<?php
|
|
|
|
/**
|
|
|
|
* QRrsItem.php
|
|
|
|
*
|
|
|
|
* Created by arielferrandini
|
|
|
|
*/
|
|
|
|
|
|
|
|
namespace PHPQRCode;
|
|
|
|
|
|
|
|
class QRrsItem {
|
|
|
|
|
|
|
|
public $mm; // Bits per symbol
|
|
|
|
public $nn; // Symbols per block (= (1<<mm)-1)
|
|
|
|
public $alpha_to = array(); // log lookup table
|
|
|
|
public $index_of = array(); // Antilog lookup table
|
|
|
|
public $genpoly = array(); // Generator polynomial
|
|
|
|
public $nroots; // Number of generator roots = number of parity symbols
|
|
|
|
public $fcr; // First consecutive root, index form
|
|
|
|
public $prim; // Primitive element, index form
|
|
|
|
public $iprim; // prim-th root of 1, index form
|
|
|
|
public $pad; // Padding bytes in shortened block
|
|
|
|
public $gfpoly;
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------
|
|
|
|
public function modnn($x)
|
|
|
|
{
|
|
|
|
while ($x >= $this->nn) {
|
|
|
|
$x -= $this->nn;
|
|
|
|
$x = ($x >> $this->mm) + ($x & $this->nn);
|
|
|
|
}
|
|
|
|
|
|
|
|
return $x;
|
|
|
|
}
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------
|
|
|
|
public static function init_rs_char($symsize, $gfpoly, $fcr, $prim, $nroots, $pad)
|
|
|
|
{
|
|
|
|
// Common code for intializing a Reed-Solomon control block (char or int symbols)
|
|
|
|
// Copyright 2004 Phil Karn, KA9Q
|
|
|
|
// May be used under the terms of the GNU Lesser General Public License (LGPL)
|
|
|
|
|
|
|
|
$rs = null;
|
|
|
|
|
|
|
|
// Check parameter ranges
|
|
|
|
if($symsize < 0 || $symsize > 8) return $rs;
|
|
|
|
if($fcr < 0 || $fcr >= (1<<$symsize)) return $rs;
|
|
|
|
if($prim <= 0 || $prim >= (1<<$symsize)) return $rs;
|
|
|
|
if($nroots < 0 || $nroots >= (1<<$symsize)) return $rs; // Can't have more roots than symbol values!
|
|
|
|
if($pad < 0 || $pad >= ((1<<$symsize) -1 - $nroots)) return $rs; // Too much padding
|
|
|
|
|
|
|
|
$rs = new QRrsItem();
|
|
|
|
$rs->mm = $symsize;
|
|
|
|
$rs->nn = (1<<$symsize)-1;
|
|
|
|
$rs->pad = $pad;
|
|
|
|
|
|
|
|
$rs->alpha_to = array_fill(0, $rs->nn+1, 0);
|
|
|
|
$rs->index_of = array_fill(0, $rs->nn+1, 0);
|
|
|
|
|
|
|
|
// PHP style macro replacement ;)
|
|
|
|
$NN =& $rs->nn;
|
|
|
|
$A0 =& $NN;
|
|
|
|
|
|
|
|
// Generate Galois field lookup tables
|
|
|
|
$rs->index_of[0] = $A0; // log(zero) = -inf
|
|
|
|
$rs->alpha_to[$A0] = 0; // alpha**-inf = 0
|
|
|
|
$sr = 1;
|
|
|
|
|
|
|
|
for($i=0; $i<$rs->nn; $i++) {
|
|
|
|
$rs->index_of[$sr] = $i;
|
|
|
|
$rs->alpha_to[$i] = $sr;
|
|
|
|
$sr <<= 1;
|
|
|
|
if($sr & (1<<$symsize)) {
|
|
|
|
$sr ^= $gfpoly;
|
|
|
|
}
|
|
|
|
$sr &= $rs->nn;
|
|
|
|
}
|
|
|
|
|
|
|
|
if($sr != 1){
|
|
|
|
// field generator polynomial is not primitive!
|
|
|
|
$rs = NULL;
|
|
|
|
return $rs;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Form RS code generator polynomial from its roots */
|
|
|
|
$rs->genpoly = array_fill(0, $nroots+1, 0);
|
|
|
|
|
|
|
|
$rs->fcr = $fcr;
|
|
|
|
$rs->prim = $prim;
|
|
|
|
$rs->nroots = $nroots;
|
|
|
|
$rs->gfpoly = $gfpoly;
|
|
|
|
|
|
|
|
/* Find prim-th root of 1, used in decoding */
|
|
|
|
for($iprim=1;($iprim % $prim) != 0;$iprim += $rs->nn)
|
|
|
|
; // intentional empty-body loop!
|
|
|
|
|
|
|
|
$rs->iprim = (int)($iprim / $prim);
|
|
|
|
$rs->genpoly[0] = 1;
|
|
|
|
|
|
|
|
for ($i = 0,$root=$fcr*$prim; $i < $nroots; $i++, $root += $prim) {
|
|
|
|
$rs->genpoly[$i+1] = 1;
|
|
|
|
|
|
|
|
// Multiply rs->genpoly[] by @**(root + x)
|
|
|
|
for ($j = $i; $j > 0; $j--) {
|
|
|
|
if ($rs->genpoly[$j] != 0) {
|
|
|
|
$rs->genpoly[$j] = $rs->genpoly[$j-1] ^ $rs->alpha_to[$rs->modnn($rs->index_of[$rs->genpoly[$j]] + $root)];
|
|
|
|
} else {
|
|
|
|
$rs->genpoly[$j] = $rs->genpoly[$j-1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// rs->genpoly[0] can never be zero
|
|
|
|
$rs->genpoly[0] = $rs->alpha_to[$rs->modnn($rs->index_of[$rs->genpoly[0]] + $root)];
|
|
|
|
}
|
|
|
|
|
|
|
|
// convert rs->genpoly[] to index form for quicker encoding
|
|
|
|
for ($i = 0; $i <= $nroots; $i++)
|
|
|
|
$rs->genpoly[$i] = $rs->index_of[$rs->genpoly[$i]];
|
|
|
|
|
|
|
|
return $rs;
|
|
|
|
}
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------
|
|
|
|
public function encode_rs_char($data, &$parity)
|
|
|
|
{
|
|
|
|
$MM =& $this->mm;
|
|
|
|
$NN =& $this->nn;
|
|
|
|
$ALPHA_TO =& $this->alpha_to;
|
|
|
|
$INDEX_OF =& $this->index_of;
|
|
|
|
$GENPOLY =& $this->genpoly;
|
|
|
|
$NROOTS =& $this->nroots;
|
|
|
|
$FCR =& $this->fcr;
|
|
|
|
$PRIM =& $this->prim;
|
|
|
|
$IPRIM =& $this->iprim;
|
|
|
|
$PAD =& $this->pad;
|
|
|
|
$A0 =& $NN;
|
|
|
|
|
|
|
|
$parity = array_fill(0, $NROOTS, 0);
|
|
|
|
|
|
|
|
for($i=0; $i< ($NN-$NROOTS-$PAD); $i++) {
|
|
|
|
|
|
|
|
$feedback = $INDEX_OF[$data[$i] ^ $parity[0]];
|
|
|
|
if($feedback != $A0) {
|
|
|
|
// feedback term is non-zero
|
|
|
|
|
|
|
|
// This line is unnecessary when GENPOLY[NROOTS] is unity, as it must
|
|
|
|
// always be for the polynomials constructed by init_rs()
|
|
|
|
$feedback = $this->modnn($NN - $GENPOLY[$NROOTS] + $feedback);
|
|
|
|
|
|
|
|
for($j=1;$j<$NROOTS;$j++) {
|
|
|
|
$parity[$j] ^= $ALPHA_TO[$this->modnn($feedback + $GENPOLY[$NROOTS-$j])];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Shift
|
|
|
|
array_shift($parity);
|
|
|
|
if($feedback != $A0) {
|
|
|
|
array_push($parity, $ALPHA_TO[$this->modnn($feedback + $GENPOLY[0])]);
|
|
|
|
} else {
|
|
|
|
array_push($parity, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|