You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1295 lines
41 KiB

/* eslint-disable */
// https://www.npmjs.com/package/css-layout
// change: module export strategy. Use ES6 Module
/**
* Copyright (c) 2014, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*/
var computeLayout = function () {
var CSS_UNDEFINED;
var CSS_DIRECTION_INHERIT = 'inherit';
var CSS_DIRECTION_LTR = 'ltr';
var CSS_DIRECTION_RTL = 'rtl';
var CSS_FLEX_DIRECTION_ROW = 'row';
var CSS_FLEX_DIRECTION_ROW_REVERSE = 'row-reverse';
var CSS_FLEX_DIRECTION_COLUMN = 'column';
var CSS_FLEX_DIRECTION_COLUMN_REVERSE = 'column-reverse';
var CSS_JUSTIFY_FLEX_START = 'flex-start';
var CSS_JUSTIFY_CENTER = 'center';
var CSS_JUSTIFY_FLEX_END = 'flex-end';
var CSS_JUSTIFY_SPACE_BETWEEN = 'space-between';
var CSS_JUSTIFY_SPACE_AROUND = 'space-around';
var CSS_ALIGN_FLEX_START = 'flex-start';
var CSS_ALIGN_CENTER = 'center';
var CSS_ALIGN_FLEX_END = 'flex-end';
var CSS_ALIGN_STRETCH = 'stretch';
var CSS_POSITION_RELATIVE = 'relative';
var CSS_POSITION_ABSOLUTE = 'absolute';
var leading = {
'row': 'left',
'row-reverse': 'right',
'column': 'top',
'column-reverse': 'bottom'
};
var trailing = {
'row': 'right',
'row-reverse': 'left',
'column': 'bottom',
'column-reverse': 'top'
};
var pos = {
'row': 'left',
'row-reverse': 'right',
'column': 'top',
'column-reverse': 'bottom'
};
var dim = {
'row': 'width',
'row-reverse': 'width',
'column': 'height',
'column-reverse': 'height'
}; // When transpiled to Java / C the node type has layout, children and style
// properties. For the JavaScript version this function adds these properties
// if they don't already exist.
function fillNodes(node) {
if (!node.layout || node.isDirty) {
node.layout = {
width: undefined,
height: undefined,
top: 0,
left: 0,
right: 0,
bottom: 0
};
}
if (!node.style) {
node.style = {};
}
if (!node.children) {
node.children = [];
}
node.children.forEach(fillNodes);
return node;
}
function isUndefined(value) {
return value === undefined;
}
function isRowDirection(flexDirection) {
return flexDirection === CSS_FLEX_DIRECTION_ROW || flexDirection === CSS_FLEX_DIRECTION_ROW_REVERSE;
}
function isColumnDirection(flexDirection) {
return flexDirection === CSS_FLEX_DIRECTION_COLUMN || flexDirection === CSS_FLEX_DIRECTION_COLUMN_REVERSE;
}
function getLeadingMargin(node, axis) {
if (node.style.marginStart !== undefined && isRowDirection(axis)) {
return node.style.marginStart;
}
var value = null;
switch (axis) {
case 'row':
value = node.style.marginLeft;
break;
case 'row-reverse':
value = node.style.marginRight;
break;
case 'column':
value = node.style.marginTop;
break;
case 'column-reverse':
value = node.style.marginBottom;
break;
}
if (value !== undefined) {
return value;
}
if (node.style.margin !== undefined) {
return node.style.margin;
}
return 0;
}
function getTrailingMargin(node, axis) {
if (node.style.marginEnd !== undefined && isRowDirection(axis)) {
return node.style.marginEnd;
}
var value = null;
switch (axis) {
case 'row':
value = node.style.marginRight;
break;
case 'row-reverse':
value = node.style.marginLeft;
break;
case 'column':
value = node.style.marginBottom;
break;
case 'column-reverse':
value = node.style.marginTop;
break;
}
if (value != null) {
return value;
}
if (node.style.margin !== undefined) {
return node.style.margin;
}
return 0;
}
function getLeadingPadding(node, axis) {
if (node.style.paddingStart !== undefined && node.style.paddingStart >= 0 && isRowDirection(axis)) {
return node.style.paddingStart;
}
var value = null;
switch (axis) {
case 'row':
value = node.style.paddingLeft;
break;
case 'row-reverse':
value = node.style.paddingRight;
break;
case 'column':
value = node.style.paddingTop;
break;
case 'column-reverse':
value = node.style.paddingBottom;
break;
}
if (value != null && value >= 0) {
return value;
}
if (node.style.padding !== undefined && node.style.padding >= 0) {
return node.style.padding;
}
return 0;
}
function getTrailingPadding(node, axis) {
if (node.style.paddingEnd !== undefined && node.style.paddingEnd >= 0 && isRowDirection(axis)) {
return node.style.paddingEnd;
}
var value = null;
switch (axis) {
case 'row':
value = node.style.paddingRight;
break;
case 'row-reverse':
value = node.style.paddingLeft;
break;
case 'column':
value = node.style.paddingBottom;
break;
case 'column-reverse':
value = node.style.paddingTop;
break;
}
if (value != null && value >= 0) {
return value;
}
if (node.style.padding !== undefined && node.style.padding >= 0) {
return node.style.padding;
}
return 0;
}
function getLeadingBorder(node, axis) {
if (node.style.borderStartWidth !== undefined && node.style.borderStartWidth >= 0 && isRowDirection(axis)) {
return node.style.borderStartWidth;
}
var value = null;
switch (axis) {
case 'row':
value = node.style.borderLeftWidth;
break;
case 'row-reverse':
value = node.style.borderRightWidth;
break;
case 'column':
value = node.style.borderTopWidth;
break;
case 'column-reverse':
value = node.style.borderBottomWidth;
break;
}
if (value != null && value >= 0) {
return value;
}
if (node.style.borderWidth !== undefined && node.style.borderWidth >= 0) {
return node.style.borderWidth;
}
return 0;
}
function getTrailingBorder(node, axis) {
if (node.style.borderEndWidth !== undefined && node.style.borderEndWidth >= 0 && isRowDirection(axis)) {
return node.style.borderEndWidth;
}
var value = null;
switch (axis) {
case 'row':
value = node.style.borderRightWidth;
break;
case 'row-reverse':
value = node.style.borderLeftWidth;
break;
case 'column':
value = node.style.borderBottomWidth;
break;
case 'column-reverse':
value = node.style.borderTopWidth;
break;
}
if (value != null && value >= 0) {
return value;
}
if (node.style.borderWidth !== undefined && node.style.borderWidth >= 0) {
return node.style.borderWidth;
}
return 0;
}
function getLeadingPaddingAndBorder(node, axis) {
return getLeadingPadding(node, axis) + getLeadingBorder(node, axis);
}
function getTrailingPaddingAndBorder(node, axis) {
return getTrailingPadding(node, axis) + getTrailingBorder(node, axis);
}
function getBorderAxis(node, axis) {
return getLeadingBorder(node, axis) + getTrailingBorder(node, axis);
}
function getMarginAxis(node, axis) {
return getLeadingMargin(node, axis) + getTrailingMargin(node, axis);
}
function getPaddingAndBorderAxis(node, axis) {
return getLeadingPaddingAndBorder(node, axis) + getTrailingPaddingAndBorder(node, axis);
}
function getJustifyContent(node) {
if (node.style.justifyContent) {
return node.style.justifyContent;
}
return 'flex-start';
}
function getAlignContent(node) {
if (node.style.alignContent) {
return node.style.alignContent;
}
return 'flex-start';
}
function getAlignItem(node, child) {
if (child.style.alignSelf) {
return child.style.alignSelf;
}
if (node.style.alignItems) {
return node.style.alignItems;
}
return 'stretch';
}
function resolveAxis(axis, direction) {
if (direction === CSS_DIRECTION_RTL) {
if (axis === CSS_FLEX_DIRECTION_ROW) {
return CSS_FLEX_DIRECTION_ROW_REVERSE;
} else if (axis === CSS_FLEX_DIRECTION_ROW_REVERSE) {
return CSS_FLEX_DIRECTION_ROW;
}
}
return axis;
}
function resolveDirection(node, parentDirection) {
var direction;
if (node.style.direction) {
direction = node.style.direction;
} else {
direction = CSS_DIRECTION_INHERIT;
}
if (direction === CSS_DIRECTION_INHERIT) {
direction = parentDirection === undefined ? CSS_DIRECTION_LTR : parentDirection;
}
return direction;
}
function getFlexDirection(node) {
if (node.style.flexDirection) {
return node.style.flexDirection;
}
return CSS_FLEX_DIRECTION_COLUMN;
}
function getCrossFlexDirection(flexDirection, direction) {
if (isColumnDirection(flexDirection)) {
return resolveAxis(CSS_FLEX_DIRECTION_ROW, direction);
} else {
return CSS_FLEX_DIRECTION_COLUMN;
}
}
function getPositionType(node) {
if (node.style.position) {
return node.style.position;
}
return 'relative';
}
function isFlex(node) {
return getPositionType(node) === CSS_POSITION_RELATIVE && node.style.flex > 0;
}
function isFlexWrap(node) {
return node.style.flexWrap === 'wrap';
}
function getDimWithMargin(node, axis) {
return node.layout[dim[axis]] + getMarginAxis(node, axis);
}
function isDimDefined(node, axis) {
return node.style[dim[axis]] !== undefined && node.style[dim[axis]] >= 0;
}
function isPosDefined(node, pos) {
return node.style[pos] !== undefined;
}
function isMeasureDefined(node) {
return node.style.measure !== undefined;
}
function getPosition(node, pos) {
if (node.style[pos] !== undefined) {
return node.style[pos];
}
return 0;
}
function boundAxis(node, axis, value) {
var min = {
'row': node.style.minWidth,
'row-reverse': node.style.minWidth,
'column': node.style.minHeight,
'column-reverse': node.style.minHeight
}[axis];
var max = {
'row': node.style.maxWidth,
'row-reverse': node.style.maxWidth,
'column': node.style.maxHeight,
'column-reverse': node.style.maxHeight
}[axis];
var boundValue = value;
if (max !== undefined && max >= 0 && boundValue > max) {
boundValue = max;
}
if (min !== undefined && min >= 0 && boundValue < min) {
boundValue = min;
}
return boundValue;
}
function fmaxf(a, b) {
if (a > b) {
return a;
}
return b;
} // When the user specifically sets a value for width or height
function setDimensionFromStyle(node, axis) {
// The parent already computed us a width or height. We just skip it
if (node.layout[dim[axis]] !== undefined) {
return;
} // We only run if there's a width or height defined
if (!isDimDefined(node, axis)) {
return;
} // The dimensions can never be smaller than the padding and border
node.layout[dim[axis]] = fmaxf(boundAxis(node, axis, node.style[dim[axis]]), getPaddingAndBorderAxis(node, axis));
}
function setTrailingPosition(node, child, axis) {
child.layout[trailing[axis]] = node.layout[dim[axis]] - child.layout[dim[axis]] - child.layout[pos[axis]];
} // If both left and right are defined, then use left. Otherwise return
// +left or -right depending on which is defined.
function getRelativePosition(node, axis) {
if (node.style[leading[axis]] !== undefined) {
return getPosition(node, leading[axis]);
}
return -getPosition(node, trailing[axis]);
}
function layoutNodeImpl(node, parentMaxWidth,
/*css_direction_t*/
parentDirection) {
var
/*css_direction_t*/
direction = resolveDirection(node, parentDirection);
var
/*(c)!css_flex_direction_t*/
/*(java)!int*/
mainAxis = resolveAxis(getFlexDirection(node), direction);
var
/*(c)!css_flex_direction_t*/
/*(java)!int*/
crossAxis = getCrossFlexDirection(mainAxis, direction);
var
/*(c)!css_flex_direction_t*/
/*(java)!int*/
resolvedRowAxis = resolveAxis(CSS_FLEX_DIRECTION_ROW, direction); // Handle width and height style attributes
setDimensionFromStyle(node, mainAxis);
setDimensionFromStyle(node, crossAxis); // Set the resolved resolution in the node's layout
node.layout.direction = direction; // The position is set by the parent, but we need to complete it with a
// delta composed of the margin and left/top/right/bottom
node.layout[leading[mainAxis]] += getLeadingMargin(node, mainAxis) + getRelativePosition(node, mainAxis);
node.layout[trailing[mainAxis]] += getTrailingMargin(node, mainAxis) + getRelativePosition(node, mainAxis);
node.layout[leading[crossAxis]] += getLeadingMargin(node, crossAxis) + getRelativePosition(node, crossAxis);
node.layout[trailing[crossAxis]] += getTrailingMargin(node, crossAxis) + getRelativePosition(node, crossAxis); // Inline immutable values from the target node to avoid excessive method
// invocations during the layout calculation.
var
/*int*/
childCount = node.children.length;
var
/*float*/
paddingAndBorderAxisResolvedRow = getPaddingAndBorderAxis(node, resolvedRowAxis);
if (isMeasureDefined(node)) {
var
/*bool*/
isResolvedRowDimDefined = !isUndefined(node.layout[dim[resolvedRowAxis]]);
var
/*float*/
width = CSS_UNDEFINED;
if (isDimDefined(node, resolvedRowAxis)) {
width = node.style.width;
} else if (isResolvedRowDimDefined) {
width = node.layout[dim[resolvedRowAxis]];
} else {
width = parentMaxWidth - getMarginAxis(node, resolvedRowAxis);
}
width -= paddingAndBorderAxisResolvedRow; // We only need to give a dimension for the text if we haven't got any
// for it computed yet. It can either be from the style attribute or because
// the element is flexible.
var
/*bool*/
isRowUndefined = !isDimDefined(node, resolvedRowAxis) && !isResolvedRowDimDefined;
var
/*bool*/
isColumnUndefined = !isDimDefined(node, CSS_FLEX_DIRECTION_COLUMN) && isUndefined(node.layout[dim[CSS_FLEX_DIRECTION_COLUMN]]); // Let's not measure the text if we already know both dimensions
if (isRowUndefined || isColumnUndefined) {
var
/*css_dim_t*/
measureDim = node.style.measure(
/*(c)!node->context,*/
/*(java)!layoutContext.measureOutput,*/
width);
if (isRowUndefined) {
node.layout.width = measureDim.width + paddingAndBorderAxisResolvedRow;
}
if (isColumnUndefined) {
node.layout.height = measureDim.height + getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_COLUMN);
}
}
if (childCount === 0) {
return;
}
}
var
/*bool*/
isNodeFlexWrap = isFlexWrap(node);
var
/*css_justify_t*/
justifyContent = getJustifyContent(node);
var
/*float*/
leadingPaddingAndBorderMain = getLeadingPaddingAndBorder(node, mainAxis);
var
/*float*/
leadingPaddingAndBorderCross = getLeadingPaddingAndBorder(node, crossAxis);
var
/*float*/
paddingAndBorderAxisMain = getPaddingAndBorderAxis(node, mainAxis);
var
/*float*/
paddingAndBorderAxisCross = getPaddingAndBorderAxis(node, crossAxis);
var
/*bool*/
isMainDimDefined = !isUndefined(node.layout[dim[mainAxis]]);
var
/*bool*/
isCrossDimDefined = !isUndefined(node.layout[dim[crossAxis]]);
var
/*bool*/
isMainRowDirection = isRowDirection(mainAxis);
var
/*int*/
i;
var
/*int*/
ii;
var
/*css_node_t**/
child;
var
/*(c)!css_flex_direction_t*/
/*(java)!int*/
axis;
var
/*css_node_t**/
firstAbsoluteChild = null;
var
/*css_node_t**/
currentAbsoluteChild = null;
var
/*float*/
definedMainDim = CSS_UNDEFINED;
if (isMainDimDefined) {
definedMainDim = node.layout[dim[mainAxis]] - paddingAndBorderAxisMain;
} // We want to execute the next two loops one per line with flex-wrap
var
/*int*/
startLine = 0;
var
/*int*/
endLine = 0; // var/*int*/ nextOffset = 0;
var
/*int*/
alreadyComputedNextLayout = 0; // We aggregate the total dimensions of the container in those two variables
var
/*float*/
linesCrossDim = 0;
var
/*float*/
linesMainDim = 0;
var
/*int*/
linesCount = 0;
while (endLine < childCount) {
// <Loop A> Layout non flexible children and count children by type
// mainContentDim is accumulation of the dimensions and margin of all the
// non flexible children. This will be used in order to either set the
// dimensions of the node if none already exist, or to compute the
// remaining space left for the flexible children.
var
/*float*/
mainContentDim = 0; // There are three kind of children, non flexible, flexible and absolute.
// We need to know how many there are in order to distribute the space.
var
/*int*/
flexibleChildrenCount = 0;
var
/*float*/
totalFlexible = 0;
var
/*int*/
nonFlexibleChildrenCount = 0; // Use the line loop to position children in the main axis for as long
// as they are using a simple stacking behaviour. Children that are
// immediately stacked in the initial loop will not be touched again
// in <Loop C>.
var
/*bool*/
isSimpleStackMain = isMainDimDefined && justifyContent === CSS_JUSTIFY_FLEX_START || !isMainDimDefined && justifyContent !== CSS_JUSTIFY_CENTER;
var
/*int*/
firstComplexMain = isSimpleStackMain ? childCount : startLine; // Use the initial line loop to position children in the cross axis for
// as long as they are relatively positioned with alignment STRETCH or
// FLEX_START. Children that are immediately stacked in the initial loop
// will not be touched again in <Loop D>.
var
/*bool*/
isSimpleStackCross = true;
var
/*int*/
firstComplexCross = childCount;
var
/*css_node_t**/
firstFlexChild = null;
var
/*css_node_t**/
currentFlexChild = null;
var
/*float*/
mainDim = leadingPaddingAndBorderMain;
var
/*float*/
crossDim = 0;
var
/*float*/
maxWidth;
for (i = startLine; i < childCount; ++i) {
child = node.children[i];
child.lineIndex = linesCount;
child.nextAbsoluteChild = null;
child.nextFlexChild = null;
var
/*css_align_t*/
alignItem = getAlignItem(node, child); // Pre-fill cross axis dimensions when the child is using stretch before
// we call the recursive layout pass
if (alignItem === CSS_ALIGN_STRETCH && getPositionType(child) === CSS_POSITION_RELATIVE && isCrossDimDefined && !isDimDefined(child, crossAxis)) {
child.layout[dim[crossAxis]] = fmaxf(boundAxis(child, crossAxis, node.layout[dim[crossAxis]] - paddingAndBorderAxisCross - getMarginAxis(child, crossAxis)), // You never want to go smaller than padding
getPaddingAndBorderAxis(child, crossAxis));
} else if (getPositionType(child) === CSS_POSITION_ABSOLUTE) {
// Store a private linked list of absolutely positioned children
// so that we can efficiently traverse them later.
if (firstAbsoluteChild === null) {
firstAbsoluteChild = child;
}
if (currentAbsoluteChild !== null) {
currentAbsoluteChild.nextAbsoluteChild = child;
}
currentAbsoluteChild = child; // Pre-fill dimensions when using absolute position and both offsets for the axis are defined (either both
// left and right or top and bottom).
for (ii = 0; ii < 2; ii++) {
axis = ii !== 0 ? CSS_FLEX_DIRECTION_ROW : CSS_FLEX_DIRECTION_COLUMN;
if (!isUndefined(node.layout[dim[axis]]) && !isDimDefined(child, axis) && isPosDefined(child, leading[axis]) && isPosDefined(child, trailing[axis])) {
child.layout[dim[axis]] = fmaxf(boundAxis(child, axis, node.layout[dim[axis]] - getPaddingAndBorderAxis(node, axis) - getMarginAxis(child, axis) - getPosition(child, leading[axis]) - getPosition(child, trailing[axis])), // You never want to go smaller than padding
getPaddingAndBorderAxis(child, axis));
}
}
}
var
/*float*/
nextContentDim = 0; // It only makes sense to consider a child flexible if we have a computed
// dimension for the node.
if (isMainDimDefined && isFlex(child)) {
flexibleChildrenCount++;
totalFlexible += child.style.flex; // Store a private linked list of flexible children so that we can
// efficiently traverse them later.
if (firstFlexChild === null) {
firstFlexChild = child;
}
if (currentFlexChild !== null) {
currentFlexChild.nextFlexChild = child;
}
currentFlexChild = child; // Even if we don't know its exact size yet, we already know the padding,
// border and margin. We'll use this partial information, which represents
// the smallest possible size for the child, to compute the remaining
// available space.
nextContentDim = getPaddingAndBorderAxis(child, mainAxis) + getMarginAxis(child, mainAxis);
} else {
maxWidth = CSS_UNDEFINED;
if (!isMainRowDirection) {
if (isDimDefined(node, resolvedRowAxis)) {
maxWidth = node.layout[dim[resolvedRowAxis]] - paddingAndBorderAxisResolvedRow;
} else {
maxWidth = parentMaxWidth - getMarginAxis(node, resolvedRowAxis) - paddingAndBorderAxisResolvedRow;
}
} // This is the main recursive call. We layout non flexible children.
if (alreadyComputedNextLayout === 0) {
layoutNode(
/*(java)!layoutContext, */
child, maxWidth, direction);
} // Absolute positioned elements do not take part of the layout, so we
// don't use them to compute mainContentDim
if (getPositionType(child) === CSS_POSITION_RELATIVE) {
nonFlexibleChildrenCount++; // At this point we know the final size and margin of the element.
nextContentDim = getDimWithMargin(child, mainAxis);
}
} // The element we are about to add would make us go to the next line
if (isNodeFlexWrap && isMainDimDefined && mainContentDim + nextContentDim > definedMainDim && // If there's only one element, then it's bigger than the content
// and needs its own line
i !== startLine) {
nonFlexibleChildrenCount--;
alreadyComputedNextLayout = 1;
break;
} // Disable simple stacking in the main axis for the current line as
// we found a non-trivial child. The remaining children will be laid out
// in <Loop C>.
if (isSimpleStackMain && (getPositionType(child) !== CSS_POSITION_RELATIVE || isFlex(child))) {
isSimpleStackMain = false;
firstComplexMain = i;
} // Disable simple stacking in the cross axis for the current line as
// we found a non-trivial child. The remaining children will be laid out
// in <Loop D>.
if (isSimpleStackCross && (getPositionType(child) !== CSS_POSITION_RELATIVE || alignItem !== CSS_ALIGN_STRETCH && alignItem !== CSS_ALIGN_FLEX_START || isUndefined(child.layout[dim[crossAxis]]))) {
isSimpleStackCross = false;
firstComplexCross = i;
}
if (isSimpleStackMain) {
child.layout[pos[mainAxis]] += mainDim;
if (isMainDimDefined) {
setTrailingPosition(node, child, mainAxis);
}
mainDim += getDimWithMargin(child, mainAxis);
crossDim = fmaxf(crossDim, boundAxis(child, crossAxis, getDimWithMargin(child, crossAxis)));
}
if (isSimpleStackCross) {
child.layout[pos[crossAxis]] += linesCrossDim + leadingPaddingAndBorderCross;
if (isCrossDimDefined) {
setTrailingPosition(node, child, crossAxis);
}
}
alreadyComputedNextLayout = 0;
mainContentDim += nextContentDim;
endLine = i + 1;
} // <Loop B> Layout flexible children and allocate empty space
// In order to position the elements in the main axis, we have two
// controls. The space between the beginning and the first element
// and the space between each two elements.
var
/*float*/
leadingMainDim = 0;
var
/*float*/
betweenMainDim = 0; // The remaining available space that needs to be allocated
var
/*float*/
remainingMainDim = 0;
if (isMainDimDefined) {
remainingMainDim = definedMainDim - mainContentDim;
} else {
remainingMainDim = fmaxf(mainContentDim, 0) - mainContentDim;
} // If there are flexible children in the mix, they are going to fill the
// remaining space
if (flexibleChildrenCount !== 0) {
var
/*float*/
flexibleMainDim = remainingMainDim / totalFlexible;
var
/*float*/
baseMainDim;
var
/*float*/
boundMainDim; // If the flex share of remaining space doesn't meet min/max bounds,
// remove this child from flex calculations.
currentFlexChild = firstFlexChild;
while (currentFlexChild !== null) {
baseMainDim = flexibleMainDim * currentFlexChild.style.flex + getPaddingAndBorderAxis(currentFlexChild, mainAxis);
boundMainDim = boundAxis(currentFlexChild, mainAxis, baseMainDim);
if (baseMainDim !== boundMainDim) {
remainingMainDim -= boundMainDim;
totalFlexible -= currentFlexChild.style.flex;
}
currentFlexChild = currentFlexChild.nextFlexChild;
}
flexibleMainDim = remainingMainDim / totalFlexible; // The non flexible children can overflow the container, in this case
// we should just assume that there is no space available.
if (flexibleMainDim < 0) {
flexibleMainDim = 0;
}
currentFlexChild = firstFlexChild;
while (currentFlexChild !== null) {
// At this point we know the final size of the element in the main
// dimension
currentFlexChild.layout[dim[mainAxis]] = boundAxis(currentFlexChild, mainAxis, flexibleMainDim * currentFlexChild.style.flex + getPaddingAndBorderAxis(currentFlexChild, mainAxis));
maxWidth = CSS_UNDEFINED;
if (isDimDefined(node, resolvedRowAxis)) {
maxWidth = node.layout[dim[resolvedRowAxis]] - paddingAndBorderAxisResolvedRow;
} else if (!isMainRowDirection) {
maxWidth = parentMaxWidth - getMarginAxis(node, resolvedRowAxis) - paddingAndBorderAxisResolvedRow;
} // And we recursively call the layout algorithm for this child
layoutNode(
/*(java)!layoutContext, */
currentFlexChild, maxWidth, direction);
child = currentFlexChild;
currentFlexChild = currentFlexChild.nextFlexChild;
child.nextFlexChild = null;
} // We use justifyContent to figure out how to allocate the remaining
// space available
} else if (justifyContent !== CSS_JUSTIFY_FLEX_START) {
if (justifyContent === CSS_JUSTIFY_CENTER) {
leadingMainDim = remainingMainDim / 2;
} else if (justifyContent === CSS_JUSTIFY_FLEX_END) {
leadingMainDim = remainingMainDim;
} else if (justifyContent === CSS_JUSTIFY_SPACE_BETWEEN) {
remainingMainDim = fmaxf(remainingMainDim, 0);
if (flexibleChildrenCount + nonFlexibleChildrenCount - 1 !== 0) {
betweenMainDim = remainingMainDim / (flexibleChildrenCount + nonFlexibleChildrenCount - 1);
} else {
betweenMainDim = 0;
}
} else if (justifyContent === CSS_JUSTIFY_SPACE_AROUND) {
// Space on the edges is half of the space between elements
betweenMainDim = remainingMainDim / (flexibleChildrenCount + nonFlexibleChildrenCount);
leadingMainDim = betweenMainDim / 2;
}
} // <Loop C> Position elements in the main axis and compute dimensions
// At this point, all the children have their dimensions set. We need to
// find their position. In order to do that, we accumulate data in
// variables that are also useful to compute the total dimensions of the
// container!
mainDim += leadingMainDim;
for (i = firstComplexMain; i < endLine; ++i) {
child = node.children[i];
if (getPositionType(child) === CSS_POSITION_ABSOLUTE && isPosDefined(child, leading[mainAxis])) {
// In case the child is position absolute and has left/top being
// defined, we override the position to whatever the user said
// (and margin/border).
child.layout[pos[mainAxis]] = getPosition(child, leading[mainAxis]) + getLeadingBorder(node, mainAxis) + getLeadingMargin(child, mainAxis);
} else {
// If the child is position absolute (without top/left) or relative,
// we put it at the current accumulated offset.
child.layout[pos[mainAxis]] += mainDim; // Define the trailing position accordingly.
if (isMainDimDefined) {
setTrailingPosition(node, child, mainAxis);
} // Now that we placed the element, we need to update the variables
// We only need to do that for relative elements. Absolute elements
// do not take part in that phase.
if (getPositionType(child) === CSS_POSITION_RELATIVE) {
// The main dimension is the sum of all the elements dimension plus
// the spacing.
mainDim += betweenMainDim + getDimWithMargin(child, mainAxis); // The cross dimension is the max of the elements dimension since there
// can only be one element in that cross dimension.
crossDim = fmaxf(crossDim, boundAxis(child, crossAxis, getDimWithMargin(child, crossAxis)));
}
}
}
var
/*float*/
containerCrossAxis = node.layout[dim[crossAxis]];
if (!isCrossDimDefined) {
containerCrossAxis = fmaxf( // For the cross dim, we add both sides at the end because the value
// is aggregate via a max function. Intermediate negative values
// can mess this computation otherwise
boundAxis(node, crossAxis, crossDim + paddingAndBorderAxisCross), paddingAndBorderAxisCross);
} // <Loop D> Position elements in the cross axis
for (i = firstComplexCross; i < endLine; ++i) {
child = node.children[i];
if (getPositionType(child) === CSS_POSITION_ABSOLUTE && isPosDefined(child, leading[crossAxis])) {
// In case the child is absolutely positionned and has a
// top/left/bottom/right being set, we override all the previously
// computed positions to set it correctly.
child.layout[pos[crossAxis]] = getPosition(child, leading[crossAxis]) + getLeadingBorder(node, crossAxis) + getLeadingMargin(child, crossAxis);
} else {
var
/*float*/
leadingCrossDim = leadingPaddingAndBorderCross; // For a relative children, we're either using alignItems (parent) or
// alignSelf (child) in order to determine the position in the cross axis
if (getPositionType(child) === CSS_POSITION_RELATIVE) {
// This variable is intentionally re-defined as the code is transpiled to a block scope language
var
/*css_align_t*/
alignItem = getAlignItem(node, child);
if (alignItem === CSS_ALIGN_STRETCH) {
// You can only stretch if the dimension has not already been set
// previously.
if (isUndefined(child.layout[dim[crossAxis]])) {
child.layout[dim[crossAxis]] = fmaxf(boundAxis(child, crossAxis, containerCrossAxis - paddingAndBorderAxisCross - getMarginAxis(child, crossAxis)), // You never want to go smaller than padding
getPaddingAndBorderAxis(child, crossAxis));
}
} else if (alignItem !== CSS_ALIGN_FLEX_START) {
// The remaining space between the parent dimensions+padding and child
// dimensions+margin.
var
/*float*/
remainingCrossDim = containerCrossAxis - paddingAndBorderAxisCross - getDimWithMargin(child, crossAxis);
if (alignItem === CSS_ALIGN_CENTER) {
leadingCrossDim += remainingCrossDim / 2;
} else {
// CSS_ALIGN_FLEX_END
leadingCrossDim += remainingCrossDim;
}
}
} // And we apply the position
child.layout[pos[crossAxis]] += linesCrossDim + leadingCrossDim; // Define the trailing position accordingly.
if (isCrossDimDefined) {
setTrailingPosition(node, child, crossAxis);
}
}
}
linesCrossDim += crossDim;
linesMainDim = fmaxf(linesMainDim, mainDim);
linesCount += 1;
startLine = endLine;
} // <Loop E>
//
// Note(prenaux): More than one line, we need to layout the crossAxis
// according to alignContent.
//
// Note that we could probably remove <Loop D> and handle the one line case
// here too, but for the moment this is safer since it won't interfere with
// previously working code.
//
// See specs:
// http://www.w3.org/TR/2012/CR-css3-flexbox-20120918/#layout-algorithm
// section 9.4
//
if (linesCount > 1 && isCrossDimDefined) {
var
/*float*/
nodeCrossAxisInnerSize = node.layout[dim[crossAxis]] - paddingAndBorderAxisCross;
var
/*float*/
remainingAlignContentDim = nodeCrossAxisInnerSize - linesCrossDim;
var
/*float*/
crossDimLead = 0;
var
/*float*/
currentLead = leadingPaddingAndBorderCross;
var
/*css_align_t*/
alignContent = getAlignContent(node);
if (alignContent === CSS_ALIGN_FLEX_END) {
currentLead += remainingAlignContentDim;
} else if (alignContent === CSS_ALIGN_CENTER) {
currentLead += remainingAlignContentDim / 2;
} else if (alignContent === CSS_ALIGN_STRETCH) {
if (nodeCrossAxisInnerSize > linesCrossDim) {
crossDimLead = remainingAlignContentDim / linesCount;
}
}
var
/*int*/
endIndex = 0;
for (i = 0; i < linesCount; ++i) {
var
/*int*/
startIndex = endIndex; // compute the line's height and find the endIndex
var
/*float*/
lineHeight = 0;
for (ii = startIndex; ii < childCount; ++ii) {
child = node.children[ii];
if (getPositionType(child) !== CSS_POSITION_RELATIVE) {
continue;
}
if (child.lineIndex !== i) {
break;
}
if (!isUndefined(child.layout[dim[crossAxis]])) {
lineHeight = fmaxf(lineHeight, child.layout[dim[crossAxis]] + getMarginAxis(child, crossAxis));
}
}
endIndex = ii;
lineHeight += crossDimLead;
for (ii = startIndex; ii < endIndex; ++ii) {
child = node.children[ii];
if (getPositionType(child) !== CSS_POSITION_RELATIVE) {
continue;
}
var
/*css_align_t*/
alignContentAlignItem = getAlignItem(node, child);
if (alignContentAlignItem === CSS_ALIGN_FLEX_START) {
child.layout[pos[crossAxis]] = currentLead + getLeadingMargin(child, crossAxis);
} else if (alignContentAlignItem === CSS_ALIGN_FLEX_END) {
child.layout[pos[crossAxis]] = currentLead + lineHeight - getTrailingMargin(child, crossAxis) - child.layout[dim[crossAxis]];
} else if (alignContentAlignItem === CSS_ALIGN_CENTER) {
var
/*float*/
childHeight = child.layout[dim[crossAxis]];
child.layout[pos[crossAxis]] = currentLead + (lineHeight - childHeight) / 2;
} else if (alignContentAlignItem === CSS_ALIGN_STRETCH) {
child.layout[pos[crossAxis]] = currentLead + getLeadingMargin(child, crossAxis); // TODO(prenaux): Correctly set the height of items with undefined
// (auto) crossAxis dimension.
}
}
currentLead += lineHeight;
}
}
var
/*bool*/
needsMainTrailingPos = false;
var
/*bool*/
needsCrossTrailingPos = false; // If the user didn't specify a width or height, and it has not been set
// by the container, then we set it via the children.
if (!isMainDimDefined) {
node.layout[dim[mainAxis]] = fmaxf( // We're missing the last padding at this point to get the final
// dimension
boundAxis(node, mainAxis, linesMainDim + getTrailingPaddingAndBorder(node, mainAxis)), // We can never assign a width smaller than the padding and borders
paddingAndBorderAxisMain);
if (mainAxis === CSS_FLEX_DIRECTION_ROW_REVERSE || mainAxis === CSS_FLEX_DIRECTION_COLUMN_REVERSE) {
needsMainTrailingPos = true;
}
}
if (!isCrossDimDefined) {
node.layout[dim[crossAxis]] = fmaxf( // For the cross dim, we add both sides at the end because the value
// is aggregate via a max function. Intermediate negative values
// can mess this computation otherwise
boundAxis(node, crossAxis, linesCrossDim + paddingAndBorderAxisCross), paddingAndBorderAxisCross);
if (crossAxis === CSS_FLEX_DIRECTION_ROW_REVERSE || crossAxis === CSS_FLEX_DIRECTION_COLUMN_REVERSE) {
needsCrossTrailingPos = true;
}
} // <Loop F> Set trailing position if necessary
if (needsMainTrailingPos || needsCrossTrailingPos) {
for (i = 0; i < childCount; ++i) {
child = node.children[i];
if (needsMainTrailingPos) {
setTrailingPosition(node, child, mainAxis);
}
if (needsCrossTrailingPos) {
setTrailingPosition(node, child, crossAxis);
}
}
} // <Loop G> Calculate dimensions for absolutely positioned elements
currentAbsoluteChild = firstAbsoluteChild;
while (currentAbsoluteChild !== null) {
// Pre-fill dimensions when using absolute position and both offsets for
// the axis are defined (either both left and right or top and bottom).
for (ii = 0; ii < 2; ii++) {
axis = ii !== 0 ? CSS_FLEX_DIRECTION_ROW : CSS_FLEX_DIRECTION_COLUMN;
if (!isUndefined(node.layout[dim[axis]]) && !isDimDefined(currentAbsoluteChild, axis) && isPosDefined(currentAbsoluteChild, leading[axis]) && isPosDefined(currentAbsoluteChild, trailing[axis])) {
currentAbsoluteChild.layout[dim[axis]] = fmaxf(boundAxis(currentAbsoluteChild, axis, node.layout[dim[axis]] - getBorderAxis(node, axis) - getMarginAxis(currentAbsoluteChild, axis) - getPosition(currentAbsoluteChild, leading[axis]) - getPosition(currentAbsoluteChild, trailing[axis])), // You never want to go smaller than padding
getPaddingAndBorderAxis(currentAbsoluteChild, axis));
}
if (isPosDefined(currentAbsoluteChild, trailing[axis]) && !isPosDefined(currentAbsoluteChild, leading[axis])) {
currentAbsoluteChild.layout[leading[axis]] = node.layout[dim[axis]] - currentAbsoluteChild.layout[dim[axis]] - getPosition(currentAbsoluteChild, trailing[axis]);
}
}
child = currentAbsoluteChild;
currentAbsoluteChild = currentAbsoluteChild.nextAbsoluteChild;
child.nextAbsoluteChild = null;
}
}
function layoutNode(node, parentMaxWidth, parentDirection) {
node.shouldUpdate = true;
var direction = node.style.direction || CSS_DIRECTION_LTR;
var skipLayout = !node.isDirty && node.lastLayout && node.lastLayout.requestedHeight === node.layout.height && node.lastLayout.requestedWidth === node.layout.width && node.lastLayout.parentMaxWidth === parentMaxWidth && node.lastLayout.direction === direction;
if (skipLayout) {
node.layout.width = node.lastLayout.width;
node.layout.height = node.lastLayout.height;
node.layout.top = node.lastLayout.top;
node.layout.left = node.lastLayout.left;
} else {
if (!node.lastLayout) {
node.lastLayout = {};
}
node.lastLayout.requestedWidth = node.layout.width;
node.lastLayout.requestedHeight = node.layout.height;
node.lastLayout.parentMaxWidth = parentMaxWidth;
node.lastLayout.direction = direction; // Reset child layouts
node.children.forEach(function (child) {
child.layout.width = undefined;
child.layout.height = undefined;
child.layout.top = 0;
child.layout.left = 0;
});
layoutNodeImpl(node, parentMaxWidth, parentDirection);
node.lastLayout.width = node.layout.width;
node.lastLayout.height = node.layout.height;
node.lastLayout.top = node.layout.top;
node.lastLayout.left = node.layout.left;
}
}
return {
layoutNodeImpl: layoutNodeImpl,
computeLayout: layoutNode,
fillNodes: fillNodes
};
}();
export default function (node) {
// disabling ESLint because this code relies on the above include
computeLayout.fillNodes(node);
computeLayout.computeLayout(node);
}
;